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Abstract

A previous study that tried to assess the impact of income volatility on income inequality in the

U.S. used state level data and a balanced panel model to conclude that increased volatility worsens

income distribution in the U.S., which implies that decreased volatility should reduce inequality.

We use the same data set that is extended by nine years and revisit the issue using linear and

nonlinear ARDL time-series models to show that the above conclusion does not hold in every state.

While we discover short-run asymmetric effects of income volatility on a measure of inequality

in most states, they translate to long-run asymmetric effects only in 16 states. Both increased

volatility and decreased volatility are found to have unequalizing effects on income distribution in

these states.
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1 Introduction

The inverted-U hypothesis, introduced by Kuznets (1955), basically identifies the level of

economic activity as the main determinant of income inequality. More precisely, it asserts

that at the early stages of economic growth, income inequality worsens and it only improves

at the later stages. Empirical support for the hypothesis is rather mixed, mostly rejecting

the hypothesis.1 Another strand of the literature, however, argues that income or output

volatility as a measure of uncertainty can worsen income inequality.

Hausmann and Gavin (1997) is perhaps the first study that alludes us to the adverse effects

of income volatility on income distribution by arguing that poorer members of society are not

well equipped to absorb economic shocks or uncertainties relative to richer members. Using

cross-sectional data from 56 countries in Latin America and industrial economies, they found

that while neither GDP growth nor inflation had any significant effects on income inequality,

the volatility of real GDP had significant adverse effects on income inequality. The same is

supported by Caroli and Garcia-Penalosa (2001), who looked at the effects of volatility of

wages on wage differentials between low skilled and high skilled workers. Similar arguments

are extended to the distribution of human capital rather than the distribution of income by

Checchi and Garcia-Penalosa (2004) who develop a theoretical model, showing that aggregate

production risk determines the average level of education and its distribution. The higher

the production risk, the higher the educational inequality. Other cross-sectional studies

that support the adverse impact of output volatility on income distribution are Breen and

Garcia-Penalosa (2005) and Laursen and Mahajan (2005).

While the above studies have used cross-sectional data from different countries, two studies

have used panel data across countries and over time. Calderon and Yeyati (2009) use data

from 75 countries over the 1970-2005 (5-year period observations) to show that even in a

panel model, output volatility has adverse effects on income inequality measured by GINI

1Examples of studies that fail to support the hypothesis include Papanek and Kyn (1986), Ram (1991),
Anand and Kanbur (1993), Deininger and Squire (1996), Chen and Ravallion (1997), Jacobsen and Giles
(1995), Li et al (1998), Barro (2000), Dollar and Kraay (2002), and Frank (2009). Studies that support the
hypothesis are: .Paukert (1973), Cline (1975), Ahluwalia (1976), Campano and Salvatore (1988), Deininger
and Squire (1998), Bahmani-Oskooee et al. (2008), Bahmani-Oskooee and Gelan (2012).
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coefficient. Their findings do not seem to be sensitive to different measures of volatility, nor

to different measures of income inequality. They also assess asymmetric effects of output

fluctuations by assigning dummy variables to output drops and output jumps to show that

output volatility has asymmetric effects on income distribution.

Finally, Huang et al. (2015) criticize all of the above studies for not using recent advances in

error-correction modelling techniques and employ a panel error-correction approach instead

of the conventional method of using cross-sectional data. Their panel data is different than

that of Calderon and Yeyati (2009) in that they use annual data from the 48 states of

the continental U.S. from 1945 to 2004 which forms a balanced panel set with N=48 and

T=60.2 Their findings are no different than any of the previous studies, in that they also

find that volatility of income has an adverse effect on income distribution in the U.S. and

this conclusion is not sensitive to different measures of income inequality, nor to different

measures of volatility.

The panel studies reviewed above do suffer from aggregation bias in that what is true in

one cross-sectional unit, may not necessarily be true in another cross-sectional unit. To

resolve the issue, we adhere to time-series modelling only and reconsider the relation between

income volatility and income inequality in each state of the U.S. This is now possible since

Frank (2009) has extended his data set through 2013, providing 68 annual observations for

each state. Since the two variables could be stationary or non-stationary, the appropriate

approach will be the linear ARDL approach of Pesaran et al. (2001). Within time-series

framework, we will take an additional step and assess the asymmetric effects of volatility on

income distribution by using the nonlinear ARDL approach of Shin et al. (2014) which also

allows us to detect asymmetric causality. This is a plausible inquiry since the rate at which

income inequality responds to an increase in income volatility could be different than the

rate at which it responds to a decline. We outline these approaches in section 2 and present

our empirical results in section 3. Section 4 provides a summary.

2The data set comes from Frank (2009).
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2 The Models and Methods

Let GINI denote the measure of income inequality in each state and V OL, the measure of

income volatility in the same state. We begin with the following bivariate model:

lnGINIt = α + βlnV OLt + εt (1)

By way of construction, since an increase in GINI reflects increased income inequality, if

an increase in income volatility is to increase inequality we would expect an estimate of

β to be positive. However, the estimate of β which reflects the long-run effects of income

volatility on GINI will be valid only if the two variables are cointegrated. According to

Engle and Granger (1987) if the two variables are integrated of the same order d but εt in

(1) is integrated of any order less than d, the two variables are cointegrated. If εt is not

integrated of an order less than d, Banerjee et al. (1998) propose an alternative test for

cointegration which is based on an error-correction model as follows:

∆lnGINIt = α +

n1∑
j=1

φj∆lnGINIt−j +

n2∑
j=o

πj∆lnV OLt−j + λεt−1 + νt (2)

The alternative test is based on the estimate of λ and its significance. If λ̂ is significantly

negative, that will support cointegration. However, the t-test that is used to establish the

significance of λ̂ has a new distribution, for which Banerjee et al. (1998) tabulate new critical

values.3

Once (2) is estimated and cointegration is established, Granger (1988, p. 203) argues for two

possible sources of causality that run from income volatility to GINI within this bivariate

framework. One is through the first-differenced variables where V OL granger causes GINI

if
∑
π̂j 6= 0 and the other one is through εt−1 if an estimate of λ is negative and significant.

In the literature, the first causality is referred to as short-run causality and the second one

as the long-run causality (Jones and Joulfaian, 1991, p. 151). Whereas, the t-test with

new critical value is used to test the significance of λ̂ , the Wald test is used to establish

3See Banerjee et al. (1998, Table 1, p. 276).
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∑
π̂j 6= 0. Note that all of the statistical properties associated with (2) will be valid only

if both variables, i.e., GINI and V OL are integrated of the same order, say, I(1). In case

one is I(1) and the other one is I(0), or both are I(1) or I(0), Pesaran et al (2001) offer an

alternative approach. They suggest solving (1) for εt, lagging the solution by one period,

and replacing εt−1 in (2) by that solution to arrive at:

∆lnGINIt = α+

n1∑
j=1

φj∆lnGINIt−j +

n2∑
j=o

πj∆lnV OLt−j + λlnGINIt−1 + γlnV OLt−1 + ωt

(3)

Once (3) is estimated using a lag selection criterion, several hypotheses could be tested. First,

short-run effects of income volatility on GINI is judged by the estimates of π̂j’s. Again, if

the Wald test confirms, short-run causality will be established. Second, long-run effects

of volatility on GINI will be derived from the estimate of γ normalized on λ.4 However,

for the normalized effects to be meaningful, cointegration must be established. Pesaran

et al. (2001) propose applying the F-test in this set up they show that the F-test has a

new distribution. They then tabulate the new critical values that account for integrating

properties of variables. Indeed, as mentioned above, variables could be a combination of

I(1) and I(0), which are properties of almost all macro variables.5 Third, the alternative

test proposed by Banerjee et al (1998) is equally applicable here. It amounts to testing for

the significance of λ in (3) again. Like the F-test, Pesaran et al. (2001, p. 303) tabulate

an upper and a lower bound critical value for this so called the t-test.6 If an estimate of λ

is negative and significant, that will not only support cointegration but also long-run causal

relation from income volatility to GINI.

As mentioned in the previous section Calderon and Yeyati (2009) assigned dummy variables

to output drops and output jumps to show that output volatility can have asymmetric effects

4Note that in (3)γ = λα, which implies that α̂ = −γ̂/λ̂.
5Indeed, we had to make sure that there is no I(2) variable by applying the ADF test to second-differenced

data and by showing that the second-differenced data are stationary.
6Note that an alternative way to apply this t-test is to use the normalized long-run estimate and equation

(1) to generate the error term, called ECM . We then move to equation (3) and replace the linear combination
of lagged level variables by ECMt−1 and estimate the new specification by imposing the same optimum lag
structure. This time λ is the coefficient attached to ECMt−1. At the asymptotic level Banerjee et al.’s
critical values are almost the same as upper bound critical values of Pesaran et al.(2001)
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on income distribution. Shin et al. (2014) have modified error-correction model (3) so that

we can assess asymmetric effects of volatility on GINI. The modification amounts to forming

∆lnV OL, which includes positive values reflecting increased volatility and negative values,

reflecting decline in volatility. Then two new time-series variables are generated using the

partial sum concept as follows:

POS =
t∑

j=1

∆lnV OL+
j =

t∑
j=1

max(∆lnV OLj, 0)

NEG =
t∑

j=1

∆lnV OL−
j =

t∑
j=1

min(∆lnV OLj, 0)

where POSt is the partial sum of positive changes in volatility and reflects only increased

volatility. Similarly, the NEGt variable that is the partial sum of the negative changes in

volatility reflects only decreased volatility. Shin et al. (2014) then propose moving back to

(3) and replacing lnV OL with POS and NEG variables to arrive at:

∆lnGINIt =α +

n1∑
j=1

φj∆lnGINIt−j +

n2∑
j=o

π+
j ∆POSt−j +

n3∑
j=o

π−
j ∆NEGt−j+

ρ0lnGINIt−1 + ρ+POSt−1 + ρ−NEGt−1 + µt (4)

Since constructing the two partial sum variables introduce nonlinear adjustment of income

volatility, Shin et al (2014) refer to models like (4) as nonlinear ARDL models whereas,

Pesaran et al. (2001) specification (3) is referred to as the linear ARDL model. Again,

once (4) is estimated, a few assumptions concerning asymmetry causality and asymmetry

cointegration could be tested. First, by applying the Wald test if we establish
∑
π+
j 6= 0, then

increased volatility is said to Granger cause GINI in the short-run. Second, if
∑
π−
j 6= 0,

then decrease in volatility is said to Granger cause GINI in the short-run. Third, if n2 6= n3,

that will be an indication of adjustment asymmetry. Fourth, if the Wald test supports
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∑
π+
j 6=

∑
π−
j , then changes in income volatility is said to have short-run cumulative or

impact asymmetric effects on income inequality. Fifth, asymmetry cointegration will be

established by applying the F-test again. Due to the dependency between the two partial

sum variables, Shin et al. (2014, p. 292) propose treating the two variables as a single

variable so that the critical values of the F test stay the same when we move from the linear

to the nonlinear model. Again, the alternative test for cointegration, i.e., the t-test could

be applied to establish the fact that the estimate of ρ0 is negative and significant. Finally,

by applying the Wald test if we establish that the normalized long-run coefficient estimate

attached to the POS variable is different than the one attached to the NEG variable, i.e.,

if (ρ+/ρ0) 6= (ρ−/ρ0), long-run asymmetric effects of income volatility on GINI will be

established.7

3 The Result

We are now in a position to estimate both the linear and the nonlinear error-correction

models (3) and (4) using aggregate level data for the U.S. as a whole and then state level

data for each state of the U.S. Since data are annual, a maximum of four lags are imposed

on each first-differenced variable and Akaikes Information Criterion (AIC) is used to select

an optimum model. Since there are different critical values for different estimates, we have

collected them in the notes to Table 1 and used them to denote a significant estimate at the

10% level by * and at the 5% level by **.

Table 1 goes about here

From the results that belong to the linear models (identified by L-ARDL) we gather that

the measure of income volatility carries at least one significant coefficient in the results for

Alaska, Arizona, Georgia, Maryland, Mississippi, Missouri, New Hampshire, North Dakota,

Oklahoma, Pennsylvania, South Carolina, South Dakota, Texas, Washington, and West Vir-

ginia. Thus, in these 15 states, income volatility has short-run effects on income distribution.

7For some other applications of these concepts see Apergis and Miller (2006), Delatte and Lopez-
Villavicencio (2012), Verheyen (2013), and Bahmani-Oskooee and Fariditavana (2016).
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However, when we consider the results from the estimates of the nonlinear models (headed

by NL-ARDL), we gather that either ∆POS or ∆NEG carries at least one significant coef-

ficient in 36 states. Clearly, introducing the nonlinear adjustment of income volatility yields

more support for the short-run effects of volatility in GINI. From the short-run estimates

of the nonlinear models, we also gather that the short-run effects are mostly asymmetric

since the estimates attached to the ∆POS variable differ from those attached to the ∆NEG

variable in size or sign in most states. However, sums of these coefficients are significantly

different from each other only in 39 states, since the Wald test reported as Wald-S is sig-

nificant in 39 states. The significance of the Wald-S reported in Panel C rejects the null of∑
π+
j 6=

∑
π−
j . Thus, there is overwhelming support for the short-run cumulative or impact

asymmetric effects of income volatility on income distribution. From the Wald tests, we also

gather that the null of either or is rejected in many more states (31 in total) than the null

of
∑
πj 6= 0 (nine in total) in the linear models, supporting short-run asymmetric causality

compared to symmetric causality.

In any state in which there is only one short-run coefficient estimate, it is easy to judge

the direction of the short-run effects. For example, in Alaska or Arizona and the L-ARDL

model, the coefficient is significantly positive, implying that an increase in volatility increases

GINI, or worsens inequality. However, when there is more than one coefficient, the task is

somewhat difficult and long-run estimates become useful. From the long-run estimates (Panel

B), we gather that in the linear models, LnV OL carries a significantly negative coefficient

that is supported by a significant F or t-test for cointegration in none of the states. If we

are to rely upon only the estimates of the linear model, we would have stopped here and

conclude that income volatility has no significant long-run effects on income distribution

in the U.S.8 However, when we consider the estimates from nonlinear models, either the

POS or the NEG variable carry a significant coefficient that is also supported by one of the

cointegration tests in 15 states. The list includes Florida, Idaho, Indiana, Kansas, Louisiana,

Michigan, Mississippi, Missouri, Montana, Nebraska, Nevada, Rhode Island, South Dakota,

8Even the alternative test for cointegration, i.e. ECMt−1, is not helpful since it carries an insignificant
coefficient in most models. In some cases, the estimate attached to ECMt−1 is positive, though insignificant.
If it was positive and significant (like in Hawaii), that would be a reflection of an unstable model.
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West Virginia, and Wyoming. Again, the increased number of states in which volatility

has long-run effects on income distribution must be attributed to nonlinear adjustment of

income volatility. Clearly, the long-run results are state specific. For example, in Florida,

increased volatility worsens inequality but decreased volatility has no long-run effects, a clear

sign of long-run asymmetry that is also supported by the Wald test reported as Wald-L in

panel C. The opposite is true in Idaho where decreased volatility worsens income inequality

but increased volatility has no effect. Only in South Dakota increased volatility worsens

inequality and decreased volatility improves it, since both the POS and NEG variables carry

positive coefficients. All in all, it appears that in nine states, i.e., Florida, Indiana, Kansas,

Louisiana, Michigan, Montana, Nebraska, South Dakota, and Wyoming increased income

volatility worsens income inequality. In another 10 states, i.e., Idaho, Indiana, Michigan,

Mississippi, Missouri, Nevada, New Hampshire, Rhode Island, West Virginia, and Wyoming

decreased volatility worsens inequality. These asymmetric effects are supported by the Wald-

L test.

Reported in Panel C are some other diagnostic statistics. To test for serial correlation, we

report the Lagrange Multiplier (LM) statistic which is distributed as χ2 with one degree

of freedom. It appears to be insignificant in almost all models, supporting autocorrelation

free residuals. Ramsey’s RESET test for misspecification is also reported. This is also

insignificant in most optimum models, implying that almost all models are correctly specified.

We have also applied the CUSUM and CUSUMSQ tests to the residuals of all models to

make sure that our estimates are stable. These two tests are identified by QS and QS2 in

panel C, where stable estimates are denoted by “S” and unstable ones by “US”. Clearly,

most estimates are stable. Finally, to judge the goodness of fit, we have reported the size of

adjusted R2.

Finally, in order to determine whether our findings are sensitive to a different measure of

income inequality and omitted variables from the bivariate model, we used the Thiel measure

of inequality (see Appendix) and added the Kuznets’s effect measured by real per capita

income in each state as well as the population in each state as other determinants of income

inequality in addition to income volatility. The results were somewhat different as follows. In
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the three states of Alaska, Hawaii, and Idaho, increased volatility made income distribution

worse in the long run and decreased volatility improved it. In eight state of Florida, Indiana,

Louisiana, Michigan, Nebraska, Ohio, West Virginia, and Wisconsin increased volatility

made income distribution worse but decreased volatility has no long-run impact, again a

sign of asymmetry effects. The opposite was true in Washington where decreased volatility

improved inequality but an increase in volatility had no effects. Finally, in Oklahoma and

Wyoming, both an increase and a decrease in volatility made income distribution worse.9

4 Summary and Conclusion

In 1955 Kuznets (1955) identified the level of income or economic activity as the main

determinant of income inequality. He asserted that at the early stages of development,

income inequality gets worse and once labor migrates from rural to urban areas, it gets

better. Since the pattern of movement of inequality over time resembles an inverted-U

shape, it is known as the inverted-U hypothesis. Unfortunately, it has been a challenge for

many researchers to verify the hypothesis empirically. Instead, what has been easy to verify

in the literature is the unequalizing effect volatility of income or output. It has been argued

that since income volatility introduces uncertainty into the economy, it redistributes income

from workers to owners of capital or from poor to rich.

Previous research has tested and mostly verified unequalizing effects of income volatility on

income distribution by using either cross-sectional data or panel that that is pooled from

many countries over certain time period. One panel study has used a balanced panel data

from 48 states of the continental U.S. from 1945 to 2004 and concluded that in the U.S.

income volatility worsens income inequality. The data in this study which comes from Frank

(2009) has now been extended till 2013, yielding 69 time-series observations for each state.

This allows us to introduce the first time-series study on the impact of income volatility on

income distribution. Furthermore, our time-series approach removes the so-called aggrega-

tion bias from the mentioned panel study. In other words, the conclusion that in the U.S.

9These results that are tabulated in 12 pages are available from the authors upon request.
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income volatility has worsened income inequality may hold in some states but not in all

states.

Therefore, in this paper, we use Farnks (2009) extended data set at the state level to as-

sess the impact of income volatility on a measure of income inequality (GINI) in each

of the 50 states plus the District of Columbia. We employ Pesaran et al.’s (2001) linear

ARDL approach to error-correction modeling and cointegration to investigate the short-run

and long-run effects of volatility on GINI to show that in the short-run income volatility

cause income distribution in nine states (i.e., in Alaska, Arizona, Georgia, Maryland, Mas-

sachusetts, Missouri, New Hampshire, Pennsylvania, and South Dakota). Judging by the

sum of short-run estimates, the cumulative effects of volatility on GINI was unequalizing

in Alaska, Arizona, and South Dakota, but equalizing in the remaining six states. However,

in none of the states do we see short-run effects lasting into long-run significant effects.

Suspecting that the adjustment of income volatility could be nonlinear, we also considered

the nonlinear ARDL approach of Shin et al. (2014) which allows us to assess the possibility

of asymmetric effects of income volatility. Once the increase in volatility is separated from

declines, we find that, indeed, the effects of volatility on GINI are asymmetric in nature.

More precisely, we discover short-run cumulative asymmetric effects in 39 states but short-

run asymmetric causality in 31 states, a significant improvement compared to the results from

linear models. However, short-run effects translated to the long-run significant, meaningful,

and asymmetric effects in 16 states. More precisely we found that in the nine states of Florida,

Indiana, Kansas, Louisiana, Michigan, Montana, Nebraska, South Dakota, and Wyoming

increased income volatility worsens income inequality and in 10 states, i.e., Idaho, Indiana,

Michigan, Mississippi, Missouri, Nevada, New Hampshire, Rhode Island, West Virginia, and

Wyoming decreased volatility worsens inequality. These findings at the state level are clearly

masked if we considered both models using aggregate data from the U.S. The results at the

beginning of Table 1 for the U.S. as a whole reveal no significant impact of income volatility

on GINI. Disaggregation by state is fruitful in yielding significant asymmetric effects in 16

states mentioned above.

Our interesting asymmetric findings imply that here in the U.S., reducing income or output
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volatility will not help to reduce income inequality. Other policies, such as reducing income

taxes on low-income people and raising taxes on rich as well as other welfare policies could

be the only way to address unfair income distribution. Future research must consider the

time-series direction that we have introduced in this paper not only to revisit the issue in

the U.S. but also in other countries.
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Appendix

Data Definition and Sources

Data Definition and Sources Annual State-level data over the period 1945-2013 are used to

carry out the empirical exercise.

Variables

GINI = Measure of income inequality in each state. This measure is constructed by Mark

W. Frank and extended beyond his own study and is publicly available from his website at:

http : //www.shsu.edu/eco mwf/inequality.html

V OL = Measure of income volatility is defined as a four-year moving standard deviation

of the change in the growth rate of real total income in each state. Total income including

imputed income of non-filers in current thousand dollars divided by CPI (base year = 2014).

All data come from the same source as GINI.

THEIL INDEX = Alternative measure of inequality known as the Theil Index. This is

basically derived from the concept of information theory. This index is a special case of

inequality called Generalized Entropy Measure. Theil index quantifies the level of disorder

within a distribution of income. State level data comes from Piketty and Saez available on

the web page of Emmanuel Saez: http : //eml.berkeley.edu/ saez/.

REAL INCOME = Total income including imputed income of non-filers in current thou-

sand dollars divided by CPI (base year= 2014). Again, data are constructed by Mark W.

Frank from individual tax filing data available from the Internal Revenue Service. http :

//www.shsu.edu/ecomwf/inequality.html

POPULATION = Level of the population in each state. Data come from the Bureau of

Economic Analysis State Personal Income. https : //www.bea.gov/regional/index.htm
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Table 1: Full-Information Estimates of Both Linear and Nonlinear ARDL Models

USA Alabama Alaska Arizona
L-ARDL NL-ARDL L-ARDL NL-ARDL L-ARDL NL-ARDL L-ARDL NL-ARDL

Panel A: Short-Run Estimates
∆LnGinit
∆LnGinit−1 .25(1.78)* .24(1.73)* .16(1.12) -.07(.52)
∆LnGinit−2 .27(1.87)* -.34(2.62)**
∆LnGinit−3

∆LnGinit−4

∆LnV OLt -.01(.77) .01(.38) .01(1.68)* .02(2.44)**
∆LnV OLt−1 -.01(1.08)
∆LnV OLt−2 .01(1.34)
∆LnV OLt−3

∆LnV OLt−4

∆POSt -.32(1.75)* .68(1.91)* .29(1.68)* -.08(.35)
∆POSt−1 -.28(1.43) -.61(2.29)**
∆POSt−2 -.49(2.00)**
∆POSt−3

∆POSt−4

∆NEGt .43(1.56) -.39(1.64) .25(1.51) .53(1.59)
∆NEGt−1 .87(2.66)**
∆NEGt−2

∆NEGt−3

∆NEGt−4

Panel B: Long-Run Estimates
Constant .60(.22) -.75(4.77)** -.12(.11) -.94(21.4)** .65(.33) -.54(1.56) -21.10(.17) -.71(10.20)**
LnV OLt .16(.30) .10(.35) .32(.63) -3.89(.17)
POSt 1.39(.68) .17(.22) 4.45(.89) 2.22(1.58)
NEGt -.61(.29) -1.64(2.1)** 3.92(.73) .96(.67)
Panel C: Diagnostic Statistics
F 0.06 1.08 0.46 2.37 3.3 0.87 3.42 3.62
ECMt−1 -.01(.55) -.07(1.31) -.02(1.01) -.24(2.18) -.03(.77) -.06(1.00) .01(.16) -.19(2.40)
LM 0.38 0.24 0.01 0.78 0.87 1.05 0.14 0.11
RESET 6.32** 3.19* 1.22 0.06 0.15 0.01 0.36 0.81
QS(QS2) S(US) S(US) S(S) S(US) US(US) S(US) S(S) S(S)
Adjusted R2 0.99 0.99 0.97 0.97 0.91 0.91 0.97 0.97
Wald Tests∑
πi = 0 0.08 0.15 2.82* 5.93**∑
π+
i = 0 5.08** 3.66* 2.82* 6.05**∑
π−
i = 0 2.45 2.70* 2.28 7.77**

Wald− S 5.24** 5.83** 0.14 10.26**
Wald− L 23.93** 68.15** 0.23 56.91**

• Numbers inside parentheses are t-ratios. **, * denote significance at the 5, 10% levels, respectively.
• At the 10% (5%) significance level when there is one exogenous variable (k=1) and 65 observations, the upper bound critical value of the

F test is 4.93 (5.98). These come from Narayan (2005, p. 1988).
• The number inside the parenthesis next to ECMt−1 is the absolute value of the t-ratio. Its upper bound critical value at the 10% (5%)

significance level is -2.93 (-3.28) when k=1 and these come from Banerjee et al (1989, p. 276). In the nonlinear model where k = 2, these
critical values change to -3.20 (-3.57).

• LM is Lagrange Multiplier test of residual serial correlation. It is distributed as χ2 with one degree of freedom (first order). Its critical

value at 10% (5%) significance level is 2.70 (3.84). These critical values are also used for Wald tests since they also have a χ2 distribution

with one degree of freedom. RESET is Ramsey’s test for misspecification. It is distributed as χ2 with one degree of freedom.
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Table 1 continued.

Arkansas California Colorado Connecticut
L-ARDL NL-ARDL L-ARDL NL-ARDL L-ARDL NL-ARDL L-ARDL NL-ARDL

Panel A: Short-Run Estimates
∆LnGinit
∆LnGinit−1 -.25(1.89)*
∆LnGinit−2 -.28(2.13)**
∆LnGinit−3 -.27(2.05)**
∆LnGinit−4

∆LnV OLt .01(.59) -.01(2.90)** -.01(.26) -.01(1.21)
∆LnV OLt−1

∆LnV OLt−2

∆LnV OLt−3

∆LnV OLt−4

∆POSt .19(.92) .61(2.90)** .59(1.80)* -.01(.04)
∆POSt−1 -.51(1.50)
∆POSt−2

∆POSt−3

∆POSt−4

∆NEGt .11(.54) .35(1.17) 1.09(2.25)** -.21(1.32)
∆NEGt−1

∆NEGt−2

∆NEGt−3

∆NEGt−4

Panel B: Long-Run Estimates
Constant -.25(.49) -.81(12.92)** 1.09(.40) -.86(4.70)** .03(.01) -.76(19.40)** 5.44(.09) -.91(10.21)**
LnV OLt .08(.59) .25(.51) -.16(.18) 2.81(.01)
POSt .72(.95) -.70(.34) 1.36(1.22) 0.05(0.04)
NEGt -.43(.57) 3.10(1.31) -.03(.03) -1.83(1.42)
Panel C: Diagnostic Statistics
F 1.24 2.60 0.04 1.58 0.01 3.20 1.41 3.41
ECMt−1 -0.05(1.35) -0.27(2.77) -0.01(0.65) -0.07(1.42) -0.01(0.27) -0.21(2.76) 0.01(0.10) -0.12(1.93)
LM 1.30 0.01 0.33 0.59 0.07 2.51 0.02 0.76
RESET 0.01 1.25 2.58 0.66 0.01 0.35 0.01 0.21
QS(QS2) US(S) S(US) S(US) S(US) S(S) US(US) US(US) US(S)
Adjusted R2 0.93 0.93 0.99 0.99 0.95 .95 .98 .98
Wald Tests∑
πi = 0 0.34 1.32 0.07 1.47∑
π+
i = 0 .84 8.43** 5.82** 0.01∑
π−
i = 0 0.29 1.36 5.05** 1.75

Wald− S 5.70** 5.84** 7.85** 3.29*
Wald− L 47.32** 18.30** 47.63** 32.52**
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Table 1 continued.

Delaware Florida Georgia Hawaii
L-ARDL NL-ARDL L-ARDL NL-ARDL L-ARDL NL-ARDL L-ARDL NL-ARDL

Panel A: Short-Run Estimates
∆LnGinit
∆LnGinit−1 -.30(2.32)** -.26(2.07)** .99(53.50)** .21(1.60) .31(1.91)*
∆LnGinit−2

∆LnGinit−3

∆LnGinit−4

∆LnV OLt .01(.05) .01(.66) .01(.26) -.01(.75)
∆LnV OLt−1 -.01(2.70)**
∆LnV OLt−2

∆LnV OLt−3

∆LnV OLt−4

∆POSt .15(.74) -.18(.77) -.06(.37) .21(.91)
∆POSt−1 -.63(2.15)** -.39(2.20)**
∆POSt−2 -.67(2.46)** .27(1.58)
∆POSt−3 -.44(1.60)
∆POSt−4

∆NEGt -1.43(3.00)** .66(1.88)** .29(1.01) -.99(1.84)*
∆NEGt−1 .55(1.15) 1.29(2.37)**
∆NEGt−2 .16(.35) -.99(1.71)*
∆NEGt−3 -1.35(3.13)**
∆NEGt−4

Panel B: Long-Run Estimates
Constant -.60(1.61) -.84(8.61)** 1.70(.30) -.67(6.90)** 6.04(.16) -.84(21.5)** -.20(.77) -.72(21.19)**
LnV OLt .01(.05) .39(.38) 1.32(.18) .11(1.62)
POSt .91(.78) 2.67(2.43)** .69(1.24) 1.15(.84)
NEGt -.04(.04) .74(.67) -.80(1.44) .46(.28)
Panel C: Diagnostic Statistics
F 0.92 1.7 0.28 4.93* 0.71 3.99 2.63 1.7
ECMt−1 -.06(.99) -.17(2.06) -.01(.41) -.19(3.06) -.01(.18) -.24(3.10) -.09(2.04) .18(2.00)
LM 6.99** 0.11 0.11 0.5 0.48 0.01 2.37 0.01
RESET 1.38 0.17 0.36 0.14 2.54 0.06 0.47 4.71**
QS(QS2) S(US) S(US) S(S) S(S) S(S) S(S) US(S) S(S)
AdjustedR2 0.77 0.82 0.98 0.98 0.99 0.99 0.92 0.93
Wald Tests∑
πi = 0 0.01 0.43 3.56* 0.57∑
π+
i = 0 0.55 7.31** 4.82** 0.83∑
π−
i = 0 6.67** 3.56* 1.01 0.46

Wald− S 7.11** 8.06** 3.98** 0.69
Wald− L 7.14** 102.32** 274.32** 2.93*
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Table 1 continued

Idaho Illinois Indiana Iowa
L-ARDL NL-ARDL L-ARDL NL-ARDL L-ARDL NL-ARDL L-ARDL NL-ARDL

Panel A: Short-Run Estimates
∆LnGinit
∆LnGinit−1 -.46(3.59)** -.29(2.35)** -.20(1.41)
∆LnGinit−2 -.29(2.29)** -.04(.33) .04(.31)
∆LnGinit−3 -.35(2.85)** -.27(2.11)**
∆LnGinit−4

∆LnV OLt .01(.07) .01(.63) .01(1.17) .01(1.45)
∆LnV OLt−1

∆LnV OLt−2

∆LnV OLt−3

∆LnV OLt−4

∆POSt .21(.92) -.30(1.39) -.70(2.38)** .28(1.61)
∆POSt−1 -.35(1.63) -1.44(3.60)**
∆POSt−2 -1.05(3.01)**
∆POSt−3 -.75(2.30)**
∆POSt−4

∆NEGt -.52(1.93)* .69(2.24)** .25(.82) .11(.55)
∆NEGt−1 .47(1.58)
∆NEGt−2

∆NEGt−3

∆NEGt−4

Panel B: Long-Run Estimates
Constant -.27(.23) -.88(47.03)** 1.25(.33) -.72(4.12)** 12.67(.08) -.90(83.3)** .17(.21) -.69(3.77)**
LnV OLt -.02(.08) .28(.43) 2.77(.08) .22(.99)
POSt .39(.93) 2.69(1.09) 1.55(5.85)** 1.19(1.27)
NEGt -.95(2.27)** .60(.24) -.46(1.97)** .47(.47)
Panel C: Diagnostic Statistics
F 0.22 7.47** 0.22 1.52 1.01 9.73** 0.83 2.17
ECMt−1 -.02(.73) -.54(4.28)** -.01(.54) -.08(1.52) -.01(.09) -.56(5.09)** -.05(1.49) -.24(2.12)
LM 0.32 3.83* 0.38 0.29 1.93 0.46 0.35 0.44
RESET 0.03 0.02 2.72* 2.36 0.53 5.45** 0.13 0.23
QS(QS2) S(US) S(S) S(S) S(S) US(S) S(US) S(US) S(US)
AdjustedR2 0.93 0.93 0.99 0.99 0.98 0.99 0.93 0.93
Wald Tests∑
πi = 0 0.01 0.4 1.37 2.11∑
π+
i = 0 0.85 4.72** 16.62** 2.58∑
π−
i = 0 3.74* 5.03** 3.32* 0.3

Wald− S 15.88** 7.02** 15.40** 2.74*
Wald− L 226.19** 26.75** 1011.3** 23.83**
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Table 1 continued

Kansas Kentucky Louisiana Maine
L-ARDL NL-ARDL L-ARDL NL-ARDL L-ARDL NL-ARDL L-ARDL NL-ARDL

Panel A: Short-Run Estimates
∆LnGinit
∆LnGinit−1 .29(2.29)** .23(1.68)* -.33(2.63)**
∆LnGinit−2 .30(1.91)*
∆LnGinit−3 .30(1.84)*
∆LnGinit−4

∆LnV OLt .01(1.52) .01(1.26) .01(1.24) -.01(.10)
∆LnV OLt−1

∆LnV OLt−2

∆LnV OLt−3

∆LnV OLt−4

∆POSt -.01(.04) .13(.64) -.12(.49) .27(.98)
∆POSt−1 -.74(1.93)* -.72(2.26)**
∆POSt−2 -.55(1.39) -.73(2.48)**
∆POSt−3 -.68(2.17)**
∆POSt−4

∆NEGt 1.44(3.68)** -.18(.69) -.29(1.11)
∆NEGt−1 -.54(1.28)
∆NEGt−2 1.08(2.56)**
∆NEGt−3

∆NEGt−4

Panel B: Long-Run Estimates
Constant .95(.39) -.71(11.91)** -.09(.19) -.83(15.1)** .25(.29) -.79(25.0)** -.64(1.28) -.87(44.86)**
LnV OLt .36(.65) .14(1.09) 20(.96) -.01(.10)
POSt 3.27(2.66)** .50(.61) 1.92(3.82)** .54(1.06)
NEGt 1.62(1.37) -.70(.78) .46(.91) -.57(1.10)
Panel C: Diagnostic Statistics
F 0.91 4.98* 1.38 2.59 1.07 5.22* 0.49 5.26*
ECMt−1 -.20(.71) -.24(2.74) -.01(.18) -.25(2.59) -.03(1.22) -.50(3.98)** -.06(1.36) -.51(4.24)**
LM 2.65 5.37** 0.19 0.26 0.09 0.01 3.10* 0.71
RESET 0.01 0.83 0.01 0.24 2.46 0.01 0.83 3.84**
QS(QS2) S(US) S(S) US(S) S(S) S(US) S(US) US(S) S(S)
Adjusted R2 0.96 0.96 0.95 0.95 0.97 0.97 0.89 0.9
Wald Tests∑
πi = 0 2.31 1.59 1.54 0.01∑
π+
i = 0 3.95** 0.41 9.22** 0.97∑
π−
i = 0 10.84** 0.47 10.08** 1.24

Wald− S 10.16** 4.67** 12.19** 14.10**
Wald− L 78.31** 43.40** 493.60** 120.07**
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Table 1 continued

Maryland Massachusetts Michigan Minnesota
L-ARDL NL-ARDL L-ARDL NL-ARDL L-ARDL NL-ARDL L-ARDL NL-ARDL

Panel A: Short-Run Estimates
∆LnGinit
∆LnGinit−1 -.21(1.59) .11(.87) -.27(2.09)**
∆LnGinit−2 .18(1.37) .43(3.46)**
∆LnGinit−3 .19(1.50)
∆LnGinit−4

∆LnV OLt -.01(1.78)* -.01(1.44) .01(.03) .01(1.00)
∆LnV OLt−1 -.01(1.55)
∆LnV OLt−2

∆LnV OLt−3

∆LnV OLt−4

∆POSt -.01(.08) -.57(2.47)** -.42(1.87)* .40(1.70)*
∆POSt−1 -.38(1.66)* -.58(2.22)**
∆POSt−2 -.49(1.92)*
∆POSt−3 -.41(1.76)*
∆POSt−4

∆NEGt -.35(1.55) .38(1.19) .52(2.02)** .71(2.43)**
∆NEGt−1

∆NEGt−2

∆NEGt−3

∆NEGt−4

Panel B: Long-Run Estimates
Constant .71(.25) -.91(19.29)** 3.51(.18) -.86(11.3)** .36(.09) -.90(99.1)** .05(.09) -.81(13.58)**
LnV OLt .27(.47) .69(.20) .02(.03) .14(1.02)
POSt -.6(.09) -.04(.03) .78(3.29)** .43(.61)
NEGt 1.57(2.01)** 1.80(1.45) -.66(3.02)** -.83(1.04)
Panel C: Diagnostic Statistics
F 0.27 2.75 0.11 2.66 0.01 9.39** 0.06 3.42
ECMt−1 -.01(.55) .22(2.78) -.01(.21) -.14(2.35) -.01(.38) -.63(5.27)** -.03(1.31) -.19(2.83)
LM 0.01 1.07 0.01 0.28 0.06 0.01 0.09 1.12
RESET 0.26 0.01 0.65 0.01 0.55 0.14 0.01 0.13
QS(QS2) S(S) S(S) S(S) S(S) S(S) S(S) S(S) S(S)
Adjusted R2 0.96 0.96 0.98 0.98 0.98 0.99 0.97 0.97
Wald Tests∑
πi = 0 3.18* 5.14** 0.01 1.01∑
π+
i = 0 0.01 9.10** 8.11** 2.90*∑
π−
i = 0 2.39 1.42 4.08** 5.92**

Wald− S 6.83** 6.63** 9.09** 7.11**
Wald− L 73.07** 56.15** 1210.9** 64.25**
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Table 1 continued

Mississippi Missouri Montana Nebraska
L-ARDL NL-ARDL L-ARDL NL-ARDL L-ARDL NL-ARDL L-ARDL NL-ARDL

Panel A: Short-Run Estimates
∆LnGinit
∆LnGinit−1 .29(2.27)** -.20(1.54) .14(.90) -.18(1.43)
∆LnGinit−2 .42(3.04)** .26(1.74)*
∆LnGinit−3 .25(1.84)* .31(2.27)**
∆LnGinit−4

∆LnV OLt .01(.13) -.01(.30) .01(.99)
∆LnV OLt−1 -.02(1.92)* -.01(2.38)** .01(1.31)
∆LnV OLt−2

∆LnV OLt−3

∆LnV OLt−4

∆POSt .27(1.23) -.06(.34) .37(1.85)* -.39(.73)
∆POSt−1

∆POSt−2

∆POSt−3

∆POSt−4

∆NEGt -.26(.47) -.31(1.55) .28(.85) .69(1.58)
∆NEGt−1 -.94(2.18)** -.41(1.39) -.77(1.79)*
∆NEGt−2 -.58(1.95)*
∆NEGt−3 .58(1.84)*
∆NEGt−4

Panel B: Long-Run Estimates
Constant -.41(.53) -.92(25.92)** .78(.26) -.88(17.6)** .04(.05) -.91(21.0)** -.06(.11) -.75(13.75)**
LnV OLt .03(.16) .30(.44) .16(.79) .15(.98)
POSt .62(1.33) -.32(.33) .71(1.87)* 1.25(2.23)**
NEGt -.76(1.75)* -1.68(1.71)* -.41(1.08) .08(.15)
Panel C: Diagnostic Statistics
F 0.58 5.44* 0.23 1.96 0.75 4.16 0.78 5.08*
ECMt−1 -.04(1.15) -.44(4.15)** -.01(.59) .19(2.29) -.05(1.41) -.52(3.32)* -.07(1.73) -.44(4.07)**
LM 1.66 0.83 0.01 0.48 0.74 0.16 1.31 0.01
RESET 0.9 4.27** 1.04 0.22 0.01 0.02 2 0.24
QS(QS2) S(S) S(S) US(S) S(S) S(S) S(S) S(US) US(US)
Adjusted R2 0.93 0.94 0.97 0.97 0.93 0.95 0.9 0.91
Wald Tests∑
πi = 0 1.7 4.11** 1 1.71∑
π+
i = 0 1.52 0.12 3.43* 0.54∑
π−
i = 0 3.38* 2.41 0.03 0.02

Wald− S 4.40** 4.71** 0.45 0.13
Wald− L 162.22** 57.83** 204.29** 108.52**
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Table 1 continued

Nevada New Hampshire New Jersey New Mexico
L-ARDL NL-ARDL L-ARDL NL-ARDL L-ARDL NL-ARDL L-ARDL NL-ARDL

Panel A: Short-Run Estimates
∆LnGinit
∆LnGinit−1 -.47(3.84)** -.21(1.66)* -.53(4.44)** -.33(2.74)** -.34(2.74)**
∆LnGinit−2 -.31(2.45)**
∆LnGinit−3 -.32(2.67)**
∆LnGinit−4

∆LnV OLt .01(.15) -.01(.54) .01(.28)
∆LnV OLt−1 -.02(2.47)**
∆LnV OLt−2 -.02(2.07)**
∆LnV OLt−3

∆LnV OLt−4

∆POSt .11(.54) -.27(1.38) -.01(.02) .27(.92)
∆POSt−1

∆POSt−2

∆POSt−3

∆POSt−4

∆NEGt -.63(2.20)** -.61(2.66)** -.16(1.08) -.45(1.27)
∆NEGt−1

∆NEGt−2

∆NEGt−3

∆NEGt−4

Panel B: Long-Run Estimates
Constant -4.54(.29) -.92(25.0)** .75(.42) -.87(31.6)** -.48(.27) -.87(9.16)** -.40(.82) -.84(24.03)**
LnV OLt -.55(.23) .32(.76) -.27(.29) .04(.28)
POSt .23(.54) -.98(1.16) -.02(.02) .59(.94)
NEGt -1.34(2.93)** -2.25(2.5)** -1.77(1.21) -.93(1.38)
Panel C: Diagnostic Statistics
F 0.12 5.72* 0.64 3.24 0.24 1.75 0.74 5.39*
ECMt−1 .01(.25) -.47(3.60)** -.02(.81) -.27(2.60) -01(.40) -.09(1.70) -.07(1.52) -.49(3.97)**
LM 5.54** 0.01 0.04 0.02 0.42 1.4 2.63 0.73
RESET 0.08 0.31 1.37 1.05 0.22 0.01 0.05 0.89
QS(QS2) S(US) S(S) S(S) S(S) US(S) S(S) S(S) S(S)
Adjusted R2 0.94 0.95 0.95 0.95 0.98 0.98 0.88 0.88
Wald Tests∑
πi = 0 0.38 6.58** 0.29 0.08∑
π+
i = 0 0.3 1.9 0.01 0.85∑
π−
i = 0 4.85** 7.05** 1.17 1.6

Wald− S 11.87** 6.79** 2.37 11.17**
Wald− L 212.10** 74.86** 23.96** 79.16**
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Table 1 continued

New York North Carolina North Dakota Ohio
L-ARDL NL-ARDL L-ARDL NL-ARDL L-ARDL NL-ARDL L-ARDL NL-ARDL

Panel A: Short-Run Estimates
∆LnGinit
∆LnGinit−1 .21(1.52) .04(.27) .09(.71) -.33(2.58)**
∆LnGinit−2 .18(1.38) .29(2.20)**
∆LnGinit−3 -.26(1.97)**
∆LnGinit−4 -.01(.12)
∆LnV OLt -.01(.16) .01(.17) -.02(1.64)
∆LnV OLt−1 .01(.45)
∆LnV OLt−2 .03(2.79)**
∆LnV OLt−3 .02(1.54)
∆LnV OLt−4

∆POSt .05(.42) .01(.54) -.27(1.32) .01(.11)
∆POSt−1 -.14(.57)
∆POSt−2 .39(1.49)
∆POSt−3

∆POSt−4

∆NEGt -.08(.51) -.30(1.66)** -.10(.80) -.15(.91)
∆NEGt−1

∆NEGt−2

∆NEGt−3

∆NEGt−4

Panel B: Long-Run Estimates
Constant -1.84(.35) -.78(7.15)** -.21(.20) -.94(19.9)** -.84(2.75)** -.82(25.9)** -.42(.29) -.89(12.85)**
LnV OLt .11(.17) .04(.17) -.11(.94) -.05(.12)
POSt .78(.43) .03(.05) .22(.98) .13(.11)
NEGt -1.13(.55) -1.20(2.1)** -.17(.80) -1.25(1.10)
Panel C: Diagnostic Statistics
F 0.3 1.76 0.12 2.67 1.91 7.59** 0.23 1.61
ECMt−1 .01(.33) -.07(1.41) -.02(.70) -.25(2.90) -.09(1.94) -.56(4.55)* -.01(.62) -.12(1.53)
LM 1.82 0.16 0.01 2.29 1.58 0.59 0.02 0.07
RESET 1.55 2.05 0.55 0.14 0.27 6.03** 1.73 1.66
QS(QS2) S(S) S(S) S(S) S(S) US(US) S(US) US(S) S(US)
Adjusted R2 0.99 0.99 0.97 0.97 0.89 0.91 0.98 0.98
Wald Tests∑
πi = 0 0.02 0.03 2.4 0.02∑
π+
i = 0 0.18 0.01 0.01 0.01∑
π−
i = 0 0.26 2.75* 0.64 0.82

Wald− S 2.04 7.35** 0.02 1.75
Wald− L 16.80** 95.76** 149.05** 26.42**
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Table 1 continued

Oklahama Oregon Pennsylvania Rhohde Islannd
L-ARDL NL-ARDL L-ARDL NL-ARDL L-ARDL NL-ARDL L-ARDL NL-ARDL

Panel A: Short-Run Estimates
∆LnGinit
∆LnGinit−1 .26(1.77)* -.27(2.15)** -.23(1.86)*
∆LnGinit−2 .23(1.58)
∆LnGinit−3

∆LnGinit−4

∆LnV OLt .01(.88) .01(.76) -.01(.27) -.01(1.59)
∆LnV OLt−1 -.01(1.68)* -.01(2.37)**
∆LnV OLt−2 .01(1.42)
∆LnV OLt−3

∆LnV OLt−4

∆POSt .36(2.53)** -.18(.66) -.19(.71) .36(1.11)
∆POSt−1 -.53(1.84)* -.64(2.30)** -.54(1.54)
∆POSt−2

∆POSt−3

∆POSt−4

∆NEGt .31(1.02) .95(2.41)** .07(.39) -.40(1.83)*
∆NEGt−1 -1.18(2.52)**
∆NEGt−2

∆NEGt−3

∆NEGt−4

Panel B: Long-Run Estimates
Constant -.10(.21) -.80(48.88)** .32(.20) -.84(23.0)** 1.52(.49) -.77(5.95)** -1.75(.89) -.92(23.70)**
LnV OLt .12(.98) .18(.53) .48(.68) -.42(.57)
POSt .81(3.17)** .59(.85) 2.55(1.21) .32(.59)
NEGt -.34(1.15) -.81(1.17) .76(.35) -1.11(2.02)**
Panel C: Diagnostic Statistics
F 1.04 3.63 0.55 2.89 0.66 1.34 1.45 4.72
ECMt−1 -.05(1.46) -.44(3.42)* -.02(.77) -.25(2.70) -.01(.79) -.09(1.59) -.02(.65) -.35(3.24)*
LM 0.01 0.01 0.16 0.45 0.17 0.21 1.26 0.15
RESET 0.02 0.32 0.47 1.12 2.45 1.06 0.42 0.19
QS(QS2) S(S) S(S) US(S) S(S) S(S) S(S) US(US) S(S)
Adjusted R2 0.95 0.96 0.97 0.97 0.98 0.98 0.96 0.96
Wald Tests∑
πi = 0 0.08 0.58 3.66* 2.53∑
π+
i = 0 6.43** 3.09* 4.77** 0.12∑
π−
i = 0 2.5 5.84** 0.16 3.34*

Wald− S 4.24** 6.20** 4.47** 0.14
Wald− L 147.47** 111.40** 24.78** 169.53**
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Table 1 continued

South Carolina South Dakota Tennessee Texas
L-ARDL NL-ARDL L-ARDL NL-ARDL L-ARDL NL-ARDL L-ARDL NL-ARDL

Panel A: Short-Run Estimates
∆LnGinit
∆LnGinit−1 -.31(2.41)**
∆LnGinit−2 -.21(1.60)
∆LnGinit−3

∆LnGinit−4

∆LnV OLt .01(.18) .20(1.74)* .01(.13) .01(1.25)
∆LnV OLt−1 -.01(1.99)** -.01(2.13)**
∆LnV OLt−2 .01(1.74)*
∆LnV OLt−3

∆LnV OLt−4

∆POSt -.01(.08) .72(1.63) -.05(.26) -.05(.18)
∆POSt−1 -1.51(3.0)** -.67(2.15)**
∆POSt−2 -.95(1.84)*
∆POSt−3

∆POSt−4

∆NEGt -.16(.78) .05(.11) -.33(1.40) .45(2.64)**
∆NEGt−1 .97(2.61)**
∆NEGt−2

∆NEGt−3

∆NEGt−4

Panel B: Long-Run Estimates
Constant .62(.22) -.87(7.60)** 2.14(.33) -.62(7.03)** -.36(.46) -.86(15.5)** .73(.96) -.46(1.58)
LnV OLt .27(.42) .83(.41) .03(.13) .33(1.69)*
POSt -.12(.08) 2.01(3.48)** -.27(.26) 7.96(1.26)
NEGt -1.39(1.00) .99(1.87)* -1.76(1.62) 7.10(1.01)
Panel C: Diagnostic Statistics
F 0.36 1.33 1.31 6.30** 0.84 2.33 1.92 1.81
ECMt−1 -.01(.63) -.11(1.42) -.02(.48) -.47(4.33)** -.03(1.08) -.19(2.33) -.03(1.68) -.06(1.22)
LM 0.53 2.46 0.53 0.58 0.02 0.38 0.57 0.68
RESET 2.24 0.23 0.65 0.02 0.05 0.16 0.73 0.16
QS(QS2) S(S) S(S) S(US) S(US) US(S) S(S) US(S) S(US)
Adjusted R2 0.97 0.97 0.91 0.92 0.96 0.96 0.98 0.98
Wald Tests∑
πi = 0 1.67 3.04* 0.02 0.24∑
π+
i = 0 0.01 3.80* 0.07 3.49*∑
π−
i = 0 0.62 2.39 1.97 6.99**

Wald− S 1.21 3.73* 4.29** 7.07**
Wald− L 10.35** 90.30** 42.15** 0.09
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Table 1 continued

Utah Vermont Virginia Washington
L-ARDL NL-ARDL L-ARDL NL-ARDL L-ARDL NL-ARDL L-ARDL NL-ARDL

Panel A: Short-Run Estimates
∆LnGinit
∆LnGinit−1 -.30(2.33)** -.05(.36)
∆LnGinit−2 -.22(1.69)* .24(1.90)*
∆LnGinit−3

∆LnGinit−4

∆LnV OLt .01(.59) -.01(.24) -.01(1.40) -.01(.47)
∆LnV OLt−1 -.01(1.55)
∆LnV OLt−2 .01(2.01)**
∆LnV OLt−3

∆LnV OLt−4

∆POSt -.38(1.35) .01(.01) .04(.26) -.82(2.96)**
∆POSt−1 -.50(1.53)
∆POSt−2

∆POSt−3

∆POSt−4

∆NEGt .44(1.23) -.44(1.65)* -.20(1.07) .65(1.92)*
∆NEGt−1 -.29(.76) .19(.52)
∆NEGt−2 .84(2.31)** .75(2.13)**
∆NEGt−3

∆NEGt−4

Panel B: Long-Run Estimates
Constant .12(.10) -.81(7.7)** -.63(.70) -.89(26.1)** .40(.18) -.88(10.7)** .02(.01) -.91(11.58)**
LnV OLt .13(.50) -.06(.23) .19(.39) .06(.13)
POSt 1.13(.74) .01(.01) .24(.26) -.10(.10)
NEGt -.58(.36) -1.34(1.7)** -1.24(1.26) -1.79(1.57)
Panel C: Diagnostic Statistics
F 1.22 1.73 0.54 3.92 0.68 1.81 0.25 3.52
ECMt−1 -.02(.86) -.13(1.61) -.03(.94) -.33(3.02) -.01(.59) -.16(2.37) -.01(.70) -.19(2.82)
LM 0.49 0.01 0.13 1.1 0.01 0.12 0.01 1.88
RESET 0.6 1.38 0.22 3.04* 0.54 0.16 1.46 0.12
QS(QS2) US(S) S(S) S(S) S(S) US(S) S(S) S(S) S(S)
Adjusted R2 0.97 0.98 0.94 0.94 0.97 0.97 0.98 0.98
Wald Tests∑
πi = 0 0.35 0.06 1.97 0.01∑
π+
i = 0 1.83 0.01 0.07 10.85**∑
π−
i = 0 2.51 2.71* 1.14 8.21**

Wald− S 3.99** 8.84** 4.90** 15.40**
Wald− L 32.28** 89.78** 48.92** 95.73**
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Table 1 continued

West Virginia Wisconsin Wyoming District of Colombia
L-ARDL NL-ARDL L-ARDL NL-ARDL L-ARDL NL-ARDL L-ARDL NL-ARDL

Panel A: Short-Run Estimates
∆LnGinit
∆LnGinit−1 .04(2.81)** -.36(2.79)** -.39(3.20)** -.28(2.30)**
∆LnGinit−2 .24(1.69)* -.32(2.60)**
∆LnGinit−3 .25(1.70)* -.25(2.05)**
∆LnGinit−4

∆LnV OLt .01(.27) .01(.29) .01(.96) -.01(.30)
∆LnV OLt−1 -.02(2.18)**
∆LnV OLt−2

∆LnV OLt−3

∆LnV OLt−4

∆POSt .24(1.44) -.44(1.83)* .22(2.08)** -.10(.22)
∆POSt−1 1.07(2.10)**
∆POSt−2

∆POSt−3

∆POSt−4

∆NEGt -.45(1.86)* .21(.76) -.30(2.05)** -.36(1.34)
∆NEGt−1 -.52(1.66)*
∆NEGt−2

∆NEGt−3

∆NEGt−4

Panel B: Long-Run Estimates
Constant .87(.48) .93(51.8)** -.07(.06) -.86(28.1)** 2.00(.32) -.86(46.6)** -.54(.98) -.83(13.18)**
LnV OLt .42(.84) .07(.28) .44(.40) -.04(.28)
POSt .48(1.40) .68(.88) .50(2.13)** -.24(.21)
NEGt -.91(2.70)** -.80(1.01) -.68(2.66)** -1.44(1.29)
Panel C: Diagnostic Statistics
F 2.33 4.49 0.31 2.69 0.77 5.63* 0.76 2.4
ECMt−1 -.03(1.07) -.50(3.49)* -.01(.92) -.20(2.45) -.01(.42) -.44(4.19)** -.04(1.15) -.25(2.57)
LM 1.02 1.32 0.01 0.05 4.91** 1.41 2.5 0.39
RESET 0.39 1.54 0.15 3.18* 1.11 4.95** 0.33 0.23
QS(QS2) S(S) S(S) S(S) S(S) US(US) S(S) S(S) S(S)
Adjusted R2 0.95 0.95 0.98 0.98 0.96 0.96 0.93 0.93
Wald Tests∑
πi = 0 1.89 0.08 0.93 0.09∑
π+
i = 0 2.08 3.34* 4.31** 2.06∑
π−
i = 0 3.45* 0.72 4.21** 1.79

Wald− S 10.60** 0.09 15.37** 2.90*
Wald− L 245.89** 142.41** 237.68** 35.65**

• Numbers inside parentheses are t-ratios. **, * denote significance at the 5, 10% levels, respectively.
• At the 10% (5%) significance level when there is one exogenous variable (k=1) and 65 observations, the upper bound critical value of the

F test is 4.93 (5.98). These come from Narayan (2005, p. 1988).
• The number inside the parenthesis next to ECMt−1 is the absolute value of the t-ratio. Its upper bound critical value at the 10% (5%)

significance level is -2.93 (-3.28) when k=1 and these come from Banerjee et al (1989, p. 276). In the nonlinear model where k = 2, these
critical values change to -3.20 (-3.57).

• LM is Lagrange Multiplier test of residual serial correlation. It is distributed as χ2 with one degree of freedom (first order). Its critical

value at 10% (5%) significance level is 2.70 (3.84). These critical values are also used for Wald tests since they also have a χ2 distribution

with one degree of freedom. RESET is Ramsey’s test for misspecification. It is distributed as χ2 with one degree of freedom.
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